Overview of the Australian Protected Cropping Industry

Graeme Smith Chairman – Protected Cropping Australia

Australian Protected Cropping Industry

- Fastest growing food producing sector in Australia
- Valued at \$1.3billion farm-gate value per annum
- Equivalent to 20% of total value of vegetable and flower production
- Combining all sectors (retail, service providers, research, etc), industry contributes around \$1.8billion to the national economy
- Employs over 10,000 people throughout Australia
- Indirect employment multiplier (est. x 2) = 20,000+ jobs
- Industry expanding at 4 6% per annum

Australian Protected Cropping Industry

- Current investment in greenhouse vegetable infrastructure is very conservatively valued at \$975m (est. 1,300ha at \$75/m2)
- Annual investment in new infrastructure valued at \$187m over next 24months (est. 85ha @ \$220/m2)
- Major domestic retailers sending strong market signals to increase consumption (est. 25% for tomatoes), to 50% in next 5 – 8 years
- Woolworths have doubled consumption of greenhouse capsicums every year since 2005

Greenhouse Production Statistics (vegetables) - estimated

State	Greenhouse Area (ha)	No of Growers
QLD	30	80
NSW	500	680
VIC	200	200
SA	580	650
WA	21	30
TAS	10	25
Totals	1341	1665
		PCA

Greenhouse Production Statistics (vegetables) - estimated

 4,090 Australian Vegetable Farmers (AusVeg June 2008)

29% of all Australian vegetable growers farm in Protected Cropping

Greenhouse Production Statistics (cut flowers) - estimated

Area (ha)	
19	112
12	170
36	135
8	47
23	94
2	29
101	587
	12 36 8 23 2

Why Greenhouse?
You can grow:

any plant!

anywhere!

anytime!

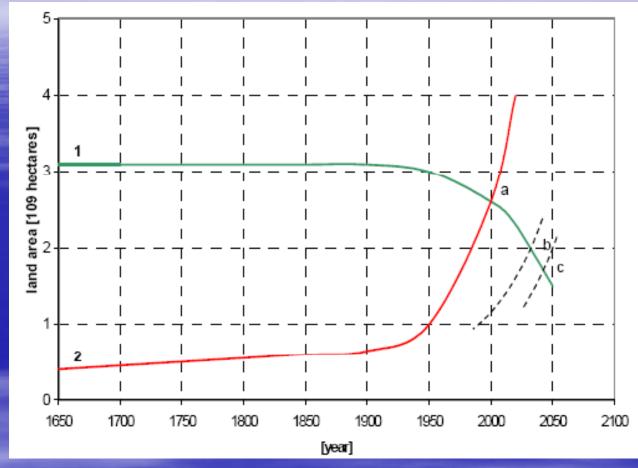
Modern controlled production systems provide similar climate to native plant location

Why Greenhouse?

 Faster growth Higher yields
 Better quality

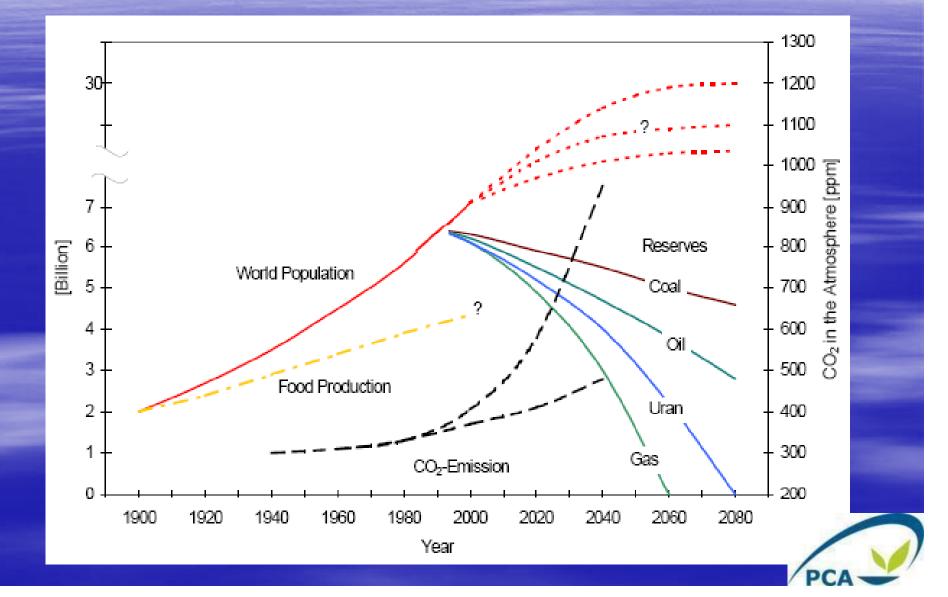
by significantly improving the growing environment

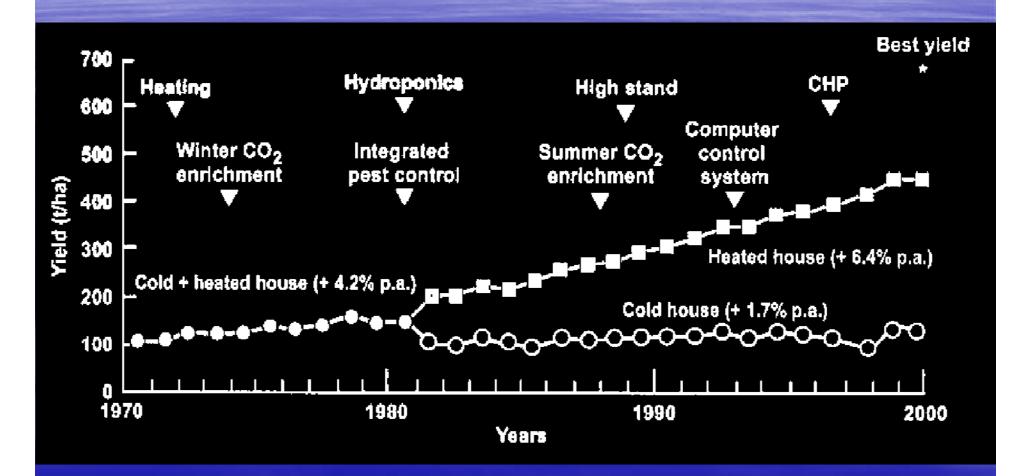
- Grow out of (& extend) seasons
- Grow foreign plants in local climate
- Pests can be excluded or controlled
- No weeds, no weeding, no herbicides
- Much reduced impact on the natural environment (significant reductions in herbicides, insecticides, fungicides, fertilisers, waste-water and land area
- Higher outputs on significantly smaller footprints
- Delivers major energy & water efficiencies



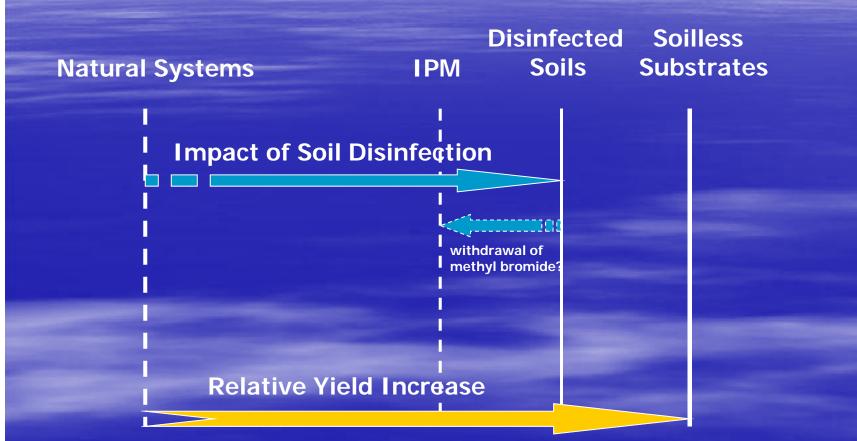
Why Greenhouse?

- Closed systems can deliver near zero waste water all year round.
- Marginal land is generally not an issue.
- Controlled environment allows better use of IPM and beneficial insects with much reduced sprays.
- Higher Brix (sugar) levels delivers sweeter flavoursome fruit and longer shelf life.
- Year-round supply of consistent quality and quantity to meet consumers needs.
 - Environmentally sound and responsible growing system.
- Able to produce local foods close to urban environments, keeping food miles low.
- Higher returns for farmers efforts. (compared to traditional annual vegetables)


Growing Population and Decreasing Arable Land Space


- 1 usable world-wide agricultural land
- 2 world population x 0.4ha (1 acre)
- a culmination point if 0.4ha is required to feed one person
- b culmination point if 0.2ha is required to feed one person
- c culmination point if 0.1ha is required to feed one person

Energy Reserves, World Population & Food Production



Why Greenhouse?

Crop Productivity Natural v Controlled Systems

Biological Equilibrium (maximum biodiversity) Controlled Systems: (reduced biodiversity - less nutrient & water competition)

Why Hydroponics?

Greenhouse Production = Risk Mitigation
Risk Reduction in:
Adverse weather risk
Productivity risk
Quality risk
Food safety risk
Pest & disease risk
Financial risk
Employment risk
Water risk

Time to invest in safe agribusiness due to increasing global demand for high quality foods at a time of apparent global weather extremes that are acting to reduce reliable production

Greenhouse v Field Production Advantages & Efficiencies

Сгор	Tomatoes	Capsicum	Cucumber	Lettuce	Flowers	
Greenhouse (kg/m2)	76	30	100	80	95%	
Field (kg/m2)	18	12	20	10	5%	
Efficiency Gains (%)	422	250	500	800	Total	

Water Use Efficiencies

Agricultural Sector	Litres of Water per \$100 of Output		
Rice	470,000		
Cotton	160,000		
Dairy – Milk	147,000		
Sugar	123,900		
Beef Cattle	81,200		
Vegetables & Fruit	37,900		
Wheat & Grain	24,500		
Hydroponic Crops	As low as 600		
	PCA		

Greenhouse V Field Tomato Production

	CASE STUDY	Field	Greenhouse	% Increase	
-	Size (n.b. 1ha = 10,000m2)	1ha	1ha	0	
•	Plant density (ave/m2)	1.1	2.2	100%	
•	Total Plants	11,000	22,000	100%	
•	Annual Production (kg)	69,231	585,000	845%	
-	% 1st Grade	80+%	95+%	12%	
•	Effective Production (1st grade kg)	58,846	555,750	944%	
•	Effective Production (kg per m2)	5.9	55.6	944%	
1	Effective Production (Kg per Plant)	5.3	25.3	472%	PCA

Greenhouse V Field Tomato Production

CASE STUDY	Field	Greenhouse	% Increase
Water Use (*)	8M/L	14.5M/L	182%
 Conversion Rate (grams fruit per litre water) 	7.4	38.2	519%
 Production per M/L (tonnes) 	8.7	40.2	465%
 Market Returns (gross) 	\$82,38 (\$1.40	5 \$1,667,250 /kg) (\$3/kg)	2,024%
 Crop Length (months) 	± 7	11.5	164%
Equivalent Field Production	(Ha) 1	9.4	944%

Greenhouse V Field Tomato Production

- When reviewing the production figures, it appears on the surface that greenhouse production uses more water than field production, however it's worth noting greenhouse production occurs over 11.5 months compared to ± 7 months for field production.
- The greenhouse production figures also include all water used, not just that put on crops (i.e. fogging, roof sprinklers, hand washing, staff facilities, etc.).
 - The important point is the conversion rate of water used to tomatoes produced, and it shows greenhouse production clearly in front (500%+).

Protected Cropping Industry Drivers

Safe Foods

Controlled production systems are able to more reliably offer products that meets both food security guidelines and the ever discerning needs of consumers.

High Quality

Products reliably scan out at 95%+ compared to field product of between 50 – 80%. High quality also delivers alternative packaging and presentation options with enhanced shelf-life.

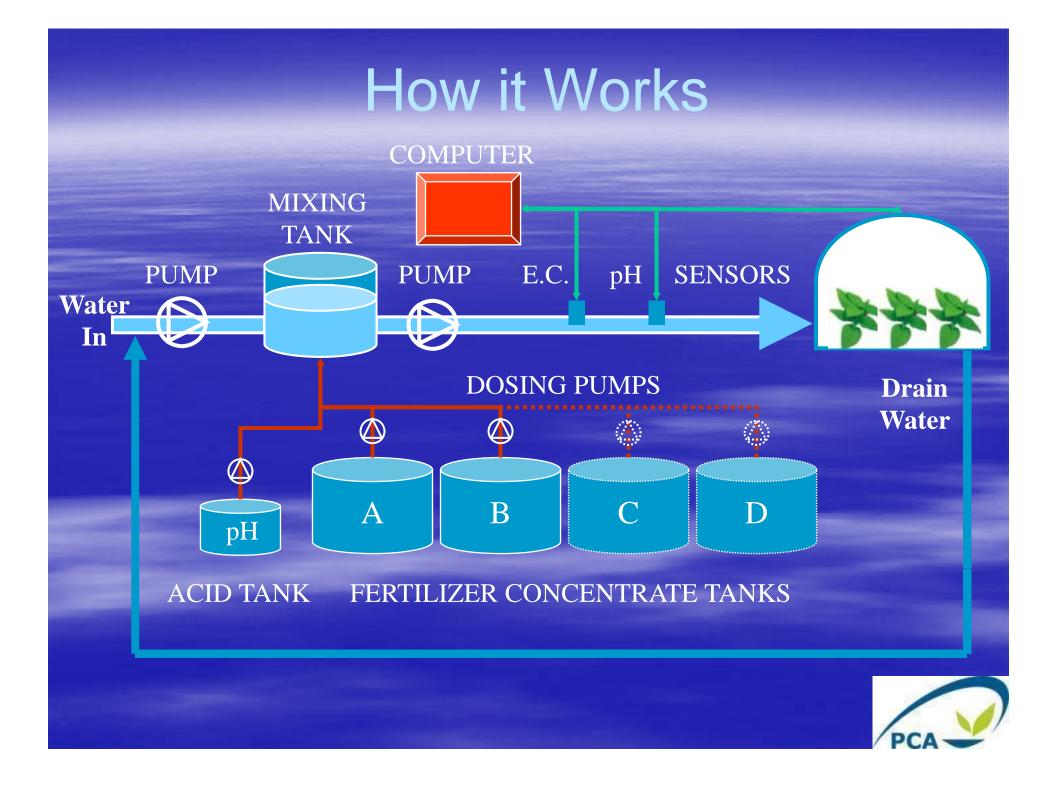
Reliable Supply

12 months supply is available as climate variations are largely removed in protected cropping and this is highly prized by retail & wholesale customers

Hydroponic Product Definition (provides a point of product differentiation)

Produce that is grown in a soilless system or container, isolated from the ground, with all its nutrients in the feed water.

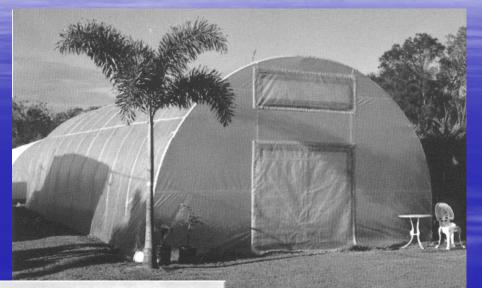
(AHGA 1999)



Return on Investment \$ (industry estimates)

Older technology
 3 – 5%

Newer technology 20 - 25% (much higher than traditional annual vegetables)



System Types

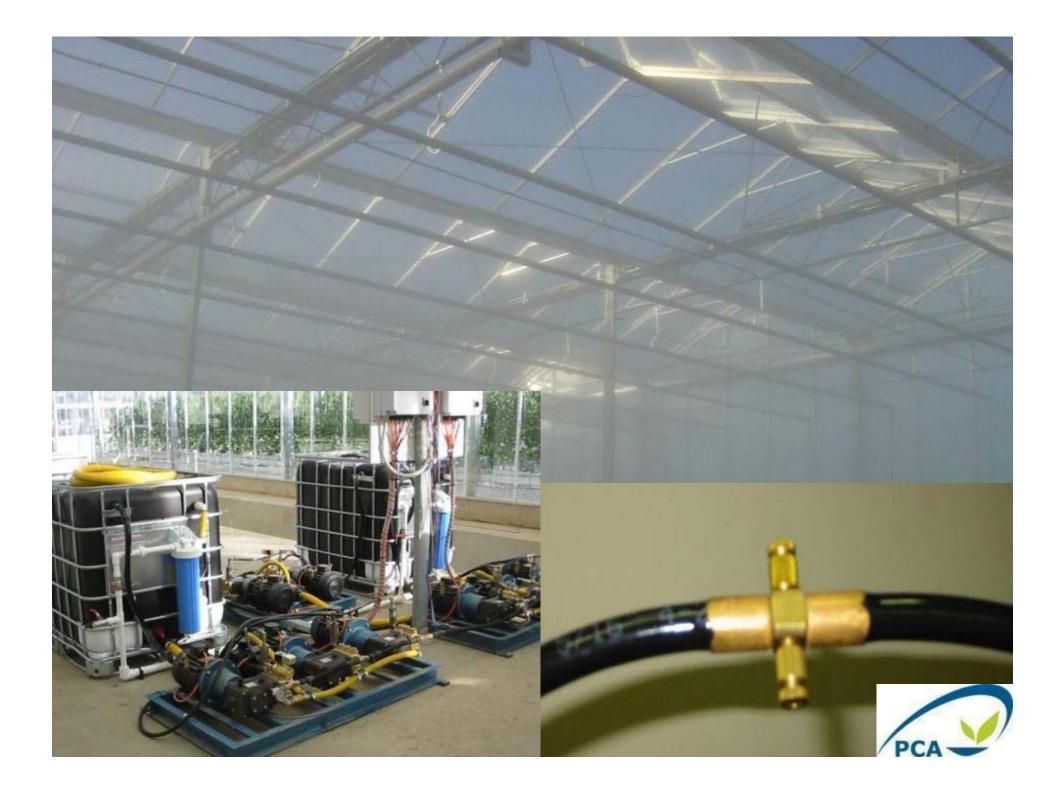
Nutrient Film Technique (lettuce, herbs, Asian vegetables, etc) Flood & Drain (nursery seedlings, potted plants, etc) Aeroponic (orchids, some leafy vegetables, etc) Media Based (vegetables, cut flowers, fruit, etc)

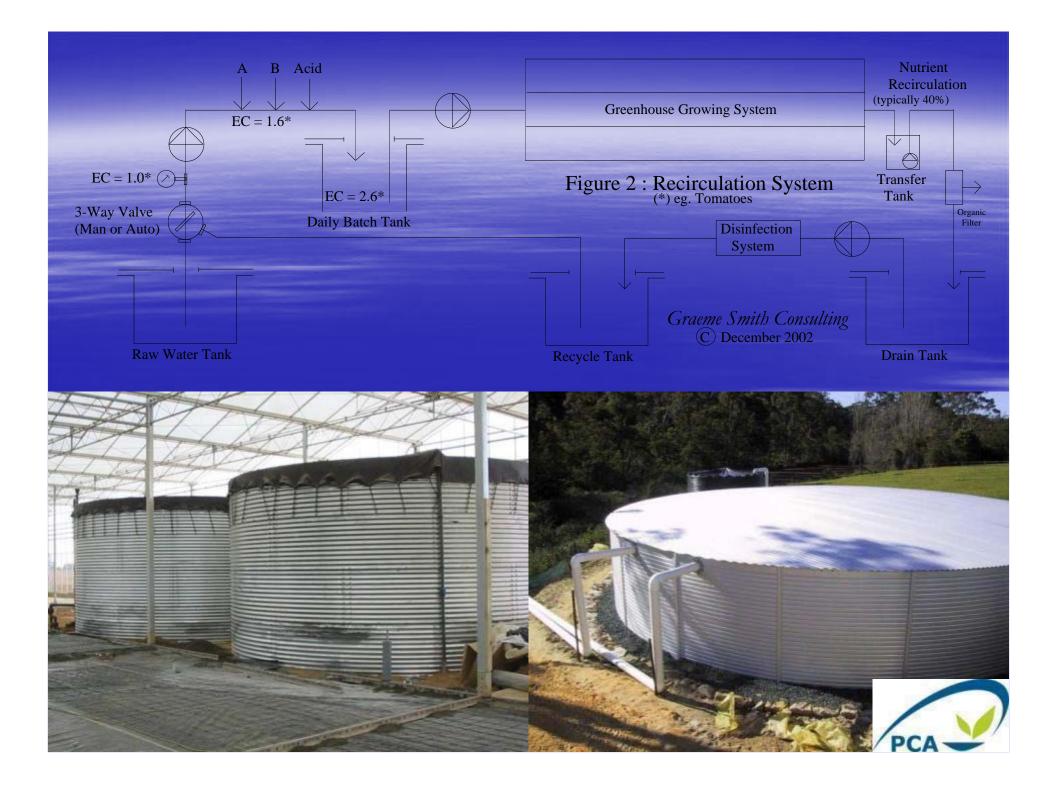
Older Greenhouse Technology

Greenhouse Technology

Greenhouse Technology

Greenhouse Technology





Fodder is grown in UV-stabilised, food quality PVC channels, using a NFT system.

oponic green feed grows to a height of eximately 250-300mm.

Compare Lettuce Systems – Production Potential (annual 2Ha Footprints)

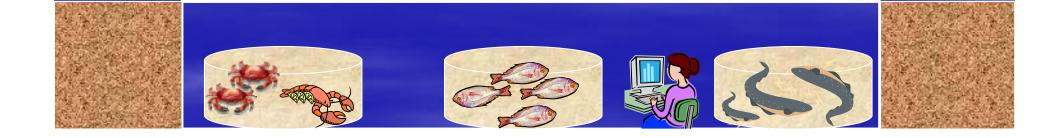
Field: ± 500,000 units

 Standard Fixed-Channel Hydroponic: ± 3,000,000 units

 Moving Gulley System: ± 8,000,000 units

Some will farm on urban land Blocks as small as 1 acre (4,000m2)

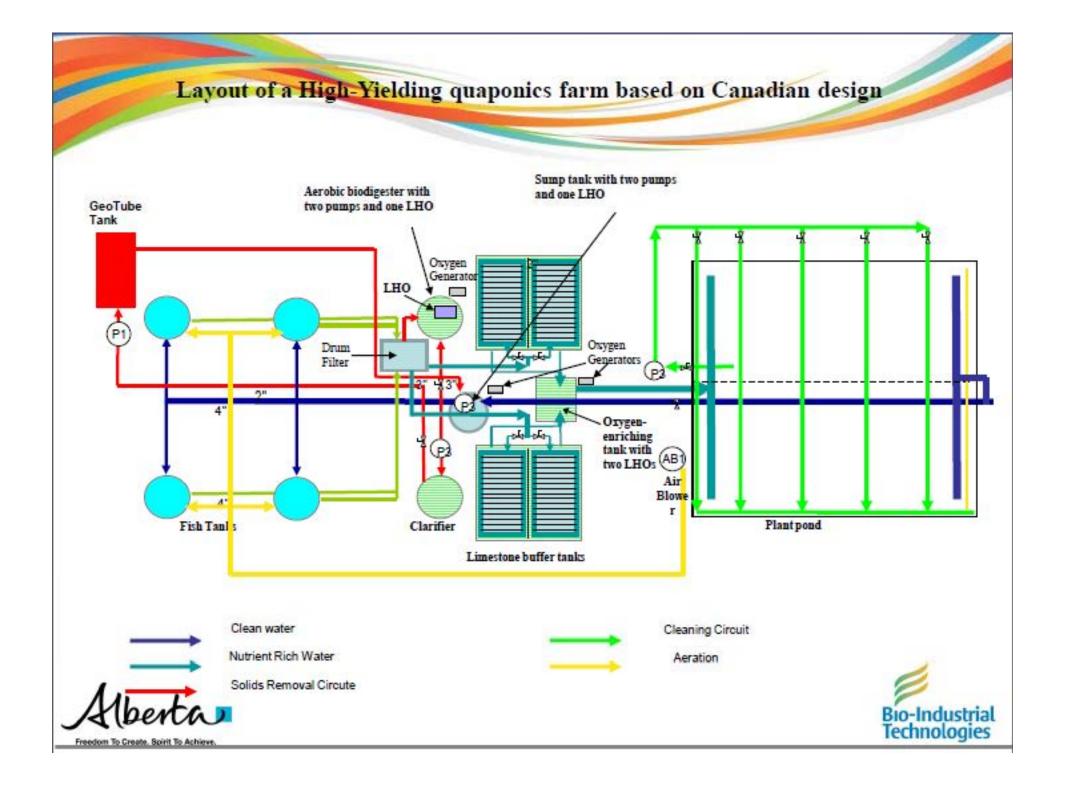
Some will dig a 2.4m hole in the ground



Water tanks can be installed into this hole

Tanks can be filled with fish or crustaceans to develop an aquaculture farm

Fish do not require natural light, so a roof can be installed


A n automated 'moving gulley' hydroponic system can be installed on top of this roof

Future Urban Farmer? A greenhouse is installed to control the climate

Greenhouse crops have Heat & CO₂ Demand (resulting in some flue emissions)

'Combined Heat & Power' (CHP) units provide heat and CO2 for greenhouse and excess energy production to grid (with no emissions)

0

Future Urban Farmer? Grid-Connect Energy delivery to local homes

Controlled Production Systems

- Produce in aquaponic systems a range of vegetable foods and fish (4,000m2, 1acre ±1.3million lettuce/herbs/asian greens & ±30tonne fish)
- Produce high-efficiency cogeneration energy to grid (95% v 35%) with low emissions
- High multiple food outputs on small footprints
- Low multiple water use and zero effluent (converts effluent stream into a revenue stream)
- Low environmental & social impacts
- Local urban organic foods keeping food miles low
- Controlled sustainable production systems are the modern face of horticulture



Protected Cropping Development Needs

- Suitable land (minimal contours)
- 3-Phase power (suitable for grid-connect)
- Quality water (well treated recirc water OK)
- Natural Gas (heat, CO₂ & energy generation)
- Access to labour
- Municipal support for development in urban areas
- Training Centre for Controlled Environment Horticulture (centralised training, R&D, technology demonstration, minor use registration, bio-control development, centre for energy and water use efficiencies, industry benchmarking & standards, automation and robotics in horticulture, etc

			Area in Hectares (est.)			
Location	State	Crop	Size 2006	Size 2011	Planned Expansion	FutureTota
Noosa	QLD	Tomatoes	0.0	2.2	2.0	4.2
Brisbane	QLD	Tomatoes	0.0	2.0	0.0	2.0
Guyra	NSW	Tomatoes	5.0	20.0	20.0	40.0
Griffith	NSW	Tomatoes	0.8	3.0	2.0	5.0
Central Coast	NSW	Tomatoes	3.0	5.0	0.0	5.0
Newcastle	NSW	Tomatoes	0.0	0.0	16.0	16.0
Warragul	VIC	Tomatoes	8.0	14.0	6.0	20.0
Tatura	VIC	Tomatoes	2.2	4.7	5.0	9.7
Mansfield	VIC	Tomatoes	1.0	3.0	2.0	5.0
Katunga	VIC	Tomatoes	1.0	6.0	0.0	6.0
Bunbury	WA	Tomatoes	0.3	0.3	0.0	0.3
Perth	WA	Tomatoes	1.1	4.0	0.0	4.0
Two Wells	SA	Tomatoes	0	17.6	10.0	27.6
Maryborough	VIC	Tomatoes	0.5	0.5	1.5	2.0
Virginia	SA	Tomatoes	2.0	5.0	2.0	7.0
		Totals	24.9	87.3	66.5	153.8
	Poten	Potential Market Si		55.1	37.5	92.6
Location		Crop	Size 2006	Size 2011	Planned Expansion	Total
Devonport	TAS	Capsicum	1.0	3.0	10.0	13.0
Perth	WA	Capsicum	0.5	2.0	0.0	2.0
Warragul	VIC	Capsicum	0.3	1.0	2.0	3.0
Geelong	VIC	Capsicum	0.0	0.0	1.5	1.5
		Totals	1.8	6.0	13.5	19.5
	P	Potential Mark		3.0	10.0	13.0
Location		Crop	Size 2006	Size 2011	Planned Expansion	Total
Virginia	SA	Cucumber	0.0	0.0	5.0	5.0
	•	Totals	0.0	0.0	5.0	5.0
	ΔΙ	I Crop Totals	26.7	93.3	85.0	178.3
			20.7	50.0		
		\$220 /m2 850,000 m2				

Thank You.

Questions?

WWW.GRAEMESMITHCONSULTING.COM